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Abstract. The usual regression problem is considered and a bivariate function with
general error is observed. The Gasser-Müller method is used to obtain the estimator
of the unknown function. Under general and realistic conditions on the covariance
structure of the error random field an upper bound is obtained for the mean squared
error.
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1 Introduction

In this paper, we are dealing with the nonparametric estimation of the average
growth function. The theory and the methods connecting to this subject have
been developed intensively since the beginning of the sixties. Among nonpara-
metric estimations one can speak about estimating the density function and the
regression function. Several papers and monographs are published about them
e.g. [14], [5] and [6]. Here, it is essential to consider the asymptotic behaviour
of the estimations (e.g. the asymptotic behaviour of their error). Both the
estimation of the density function and that of the regression function were ex-
tensively studied in the dependent case (i.e. for time series) and in the spatial
case (i.e. for random �elds). It is worth mentioning the case of in�ll-increasing
sampling scheme (it means that the sequence of domains is increasing and at
the same time the locations of observations become dense). Using this setup,
[13] studied the asymptotic behaviour of the empirical distribution function.
The importance of the in�ll-increasing sampling method is underlined in [7]
and [12].

The growth curve model is used mostly in applied sciences such as biostatis-
tics, medical research, epidemiology (see [15]) and pharmacokinetic research.
In the case of time series, the points of observations are usually taken equally
spaced during the process of sampling (it is called �xed-design model) but other
types of sampling method can also be considered e.g. random design. In prac-
tical situations, typically repeated measurements are used and those can make



the estimators of the function f asymptotically consistent. This was examined
for the kernel regression estimators e.g. in the papers [11] and [10]. In [8], the
authors dealt with the case when some monotone transformation of the time
scale was allowed. The nonparametric regression model with correlated errors
was considered in several papers, too. For example, in [1], the kernel construc-
tion of the regression estimator was modi�ed, in [2], there are examinations for
models with weakly stationary second order error processes and [3] contains
the study of estimating the regression function from quantized observations.

In [4], the nonparametric estimation of the growth curve is considered in
the case when there is a nonstationary error process and the autocovariance
function does not have any speci�c form. More precisely, the following model
was considered there:

Yj(xi) = f (xi) + εj(xi), (j = 1 , . . . ,m, i = 1 , . . . , n)

wheref is the unknown average growth curve and (εj) is the error process. The
model means thatm experimental units are taken and each of them produces
n measurements. The estimator off is based on the observations

{Yj(xi) = f (xi) + εj(xi), j = 1 , . . . ,m, i = 1 , . . . , n}

where the locations of the observations are chosen as follows:

0 = x1 < x2 < . . . < xn = 1 , max
i
|xi − xi−1| = O

(
1
n

)
.

The estimator of f given by Gasser and M•uller has the form

f̂h(x) =
1
n

n∑
i=1

Wh,i(x)Y (xi)

where

Y (x) =
1
m

m∑
j=1

Yj(x)

is the average of the observations in the pointx,

Wh,i(x) = n

∫ mi

mi−1

1
h
K

(
x− u
h

)
du

and the midpoints {mi, i = 0 , . . . , n} are de�ned by

m0 = 0 , mi =
xi + xi+1

2
for i = 1 , . . . , n− 1, mn = 1 .

In [4], under realistic conditions on the covariance structure of the error
process (εj), an asymptotic upper bound was derived for the mean squared
error

E(f̂h(x) − f (x))2

and the optimal bandwidth was also determined.
For claiming precisely the theorem, they had some assumptions:



(i) The autocovariance function % of (εj) exists and is continuous on the square
[0,1]2.

(ii) %(x, y) has left and right �rst-order derivatives at the diagonal x = y, that
is

%(0 ,1) (x, x−) = lim
y↗x

∂%

∂y
(x, y) and %(0 ,1) (x, x+ ) = lim

y↘x

∂%

∂y
(x, y)

exist and are continuous.
The jump function along the diagonal α(x) = %(0 ,1) (x, x−) − %(0 ,1) (x, x+ )
is assumed to be continuous and not identically equal to zero.

(iii) %(x, y) is assumed to have continuous mixed partial derivatives up to order
two o� the diagonal x 6= y in the unit square and satis�es:

A(i,j) = sup
0≤x 6= y≤1

|%(i,j) (x, y)| <∞ for all integers i, j such that 0≤ i+ j ≤ 2.

And the theorem of [4] was the following:
If the autocovariance function % satis�es Assumptions (i)-(ii)-(iii) and f is a

twice di�erentiable continuous function on [0 ,1] with f ′′(x) 6= 0 for 0 < x < 1,
then asn,m→ +∞,

E(f̂h(x) − f (x))2 =
1
m

(
%(x, x) − 1

2
α(x)CKh

)

+
h4

4
d2
K(f ′′(x))2 + O

(
1
mn

+
h2

n

)
+ o

(
h4 +

h

m

)
where

CK =
∫ 1

−1

∫ 1

−1
|u− v|K(u)K(v)dudv and dK =

∫
u2K(u)du.

Moreover, if evenm/n = O(1) as n,m→ +∞ is satis�ed, then the asymptotic
MSE is minimized by taking the bandwidth

h?x =
(

α(x)CK
2d2
K(f ′′(x))2

)1/3

m−1/3.

In this paper, we consider the spatial version of the above model. We get
the analogue of the result of [4] for the spatial case.

More precisely, we shall study the problem of estimating the average growth
function for the following �xed design model. We havem experimental units,
each of them producingn× n measurements of the response:

Yk(u, v) = f (u, v) + εk(u, v) (k = 1 , . . . ,m). (1)

Here, f : [0,1]2 → R is the unknown average growth function and (εk) is the
error random �eld. We assume that the random �elds {εk(x), x ∈ [0,1]2, k =



1, . . . ,m} are identically distributed and independent. Therefore they have the
same covariance function

%(x,y) = cov(εk(x), εk(y)) , x,y ∈ [0,1]2.

We assume thatEεk(x) = 0, x ∈ [0,1]2. The estimator of f is based on the
observations

{Yk(ui, vj), i, j = 1 , . . . , n, k = 1 , . . . ,m} (2)

where the locations of the observations are chosen as follows:

0 = u1 < u2 < . . . < un = 1 , max
i
|ui − ui−1| = O

(
1
n

)
,

0 = v1 < v2 < . . . < vn = 1 , max
j
|vj − vj−1| = O

(
1
n

)
.

The Gasser-M•uller estimator of the bivariate function f has the form

f̂h(u, v) =
1
n2

n∑
i=1

n∑
j=1

Wh,i,j(u, v)Y (ui, vj), u, v ∈ [0,1] (3)

where

Y (u, v) =
1
m

m∑
k=1

Yk(u, v)

is the average of the observations in the point (u, v),

Wh,i,j(u, v) = n2
∫ ai

ai−1

∫ bj

bj−1

1
h2 K̃

(
(u, v) − (x, y)

h

)
dxdy.

For simplicity, we use product type kernel functions i.e. K̃(x, y) = K(x)K(y)
whereK(·) is a univariate kernel function. Therefore

Wh,i,j(u, v) = n

∫ ai

ai−1

1
h
K

(
u− x
h

)
dx · n

∫ bj

bj−1

1
h
K

(
v − y
h

)
dy

and the midpoints {ai, i = 0 , . . . , n; bj , j = 0 , . . . , n} are de�ned by

a0 = 0 , ai =
ui + ui+1

2
for i = 1 , . . . , n− 1, an = 1 ,

b0 = 0 , bj =
vj + vj+1

2
for j = 1 , . . . , n− 1, bn = 1 .

Section 2 contains the main result of the paper. It is an asymptotic upper
bound for the mean squared error of the estimatorf̂h when both the bandwidth
h goes to zero and the numbern of observations goes to in�nity. The upper
bound is expressed in terms of the derivatives of the covariance function. Its
proof is based on the appropriate versions of the Taylor expansion. We have to
divide the domains carefully and in each subdomain we have to �nd an adequate
version of the Taylor expansion to avoid the singularities of the covariance
function. Therefore, our result can be used for several particular covariance
structures.



2 The main result

Our aim is to �nd the asymptotic behaviour of the mean squared error (MSE).
We want to �nd realistic assumptions for the covariance function of εk.

(i) Let K be a kernel function, that is, K : (−∞,∞) → [0,∞), K is even,K
is zero outside [−1,1],

∫ 1
−1 K(u)du = 1.

Assume that the two variable kernel function K̃ is of product form, i.e.

K̃(u, v) = K(u)K(v), u, v ∈ R.

Let dK =
∫ 1
−1 u

2K(u)du.
(ii) Assume that the average growth function f : [0,1]2 → R has partial deriva-

tives up to order three and the third order partial derivatives are bounded.
Assume that the autocovariance of the random �eld εk(u, v) exists. Let

%((u1, v1), (u2, v2)) = V ar(εk(u1, v1), εk(u2, v2)) , u1, u2, v1, v2 ∈ [0,1]

hold (k = 1 , . . . ,m).
(iii) The �rst order partial derivatives of % exist outside the diagonal, i.e.

∂

∂x1
%((x, y), (s, t)) exist if x 6= s,

∂

∂x2
%((x, y), (s, t)) exist if y 6= t,

moreover,

sup
x 6= s

∣∣∣∣ ∂∂x1
%((x, y), (s, t))

∣∣∣∣ ≤ A1 <∞, sup
y 6= t

∣∣∣∣ ∂∂x2
%((x, y), (s, t))

∣∣∣∣ ≤ A1 <∞

where ∂
∂x1

%((x, y), (s, t)) and ∂
∂x2

%((x, y), (s, t)) denote the �rst order par-
tial derivatives of % with respect to the �rst and the second variables,
respectively.

(iv) The one-sided limits

lim
ξ→u,ξ<u

∂

∂x1
%((ξ, v1), (u, v2)) =

∂

∂x1
%((u−, v1), (u, v2)) ,

lim
ξ→u,ξ>u

∂

∂x1
%((ξ, v1), (u, v2)) =

∂

∂x1
%((u+ , v1), (u, v2)) ,

lim
η→v,η<v

∂

∂x2
%((u1, η), (u2, v)) =

∂

∂x2
%((u1, v

−), (u2, v)) ,

lim
η→v,η>v

∂

∂x2
%((u1, η), (u2, v)) =

∂

∂x2
%((u1, v

+ ), (u2, v))

exist.
We say that ∂

∂x1
%((x, y), (s, t)) is continuous on the domain x ≤ s if it is

continuous as a four variable function if ∂
∂x1

%((s, y), (s, t)) is interpreted as
∂
∂x1

%((s−, y), (s, t)). The continuity on the domain x ≥ s is de�ned analo-
gously. We say that ∂

∂x1
%((x, y), (s, t)) is continuous outside the diagonal if

it is continuous both on x ≤ s and x ≥ s.



(v) Let ∂
∂x1

%((x, y), (s, t)) and ∂
∂x2

%((x, y), (s, t)) be continuous outside the di-
agonal.

(vi) The second-order partial derivatives ∂2

∂x1∂x3
, ∂2

∂x2
1
, ∂2

∂x2
2

and ∂2

∂x2∂x4
of %((x, y), (s, t))

exist outside the diagonal (that is, for all x, y, s, t ∈ [0,1] except whenx = s
or y = t) and they are bounded.

Theorem 1 Let the model Yk(x, y) be defined by (1), the sample Yk(ui, vj) by

(2) and the estimator f̂h(u, v) by (3). Assume that the function f satisfies as-
sumption (ii), the kernel function K satisfies (i), while the covariance function
%((x, y), (s, t)) satisfies (iii), (iv), (v) and (vi). Then, as n → ∞ and h → 0,
we have that

E(f̂h(u, v) − f (u, v))2 =
1
m
%((u, v), (u, v))

− h
m

2B
{

∂

∂x1
%((u+ , v), (u, v)) − ∂

∂x1
%((u−, v), (u, v)) +

∂

∂x2
%((u, v+ ), (u, v)) − ∂

∂x2
%((u, v−), (u, v))

}

+
1
4
h4d2

K

(
∂2

∂x2
1
f (u, v) +

∂2

∂x2
2
f (u, v)

)2

+
(
h2

m
+

1
mn

+
1
n2

)
O(1)

where dK =
∫ 1
−1 u

2K(u)du and B =
∫ 1
−1

∫ 1
x
xK(x)K(s)dsdx.
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